Gapped Boundaries and Defects in (2+1)DTopological Phases

Iris Cong

irisycong@engineering.ucla.edu

Department of Computer Science University of California, Los Angeles

June 24th, 2017

Introduction and Motivations

- (2+1)D topological phases
 - (Non-abelian) bulk anyons often used for topological quantum computation (TQC)
 - Difficult to realize

Introduction and Motivations

- (2+1)D topological phases
 - (Non-abelian) bulk anyons often used for topological quantum computation (TQC)
 - Difficult to realize
- ullet Want non-abelian objects arising from abelian materials o study gapped boundaries and defects

Introduction and Motivations

- (2+1)D topological phases
 - (Non-abelian) bulk anyons often used for topological quantum computation (TQC)
 - Difficult to realize
- ullet Want non-abelian objects arising from abelian materials o study gapped boundaries and defects
- Gapped boundaries and boundary defects found in physical (FQH/SC/FM) systems (Lindner, Berg, Refael, Stern)

Overview

- Tensor categories and the Levin-Wen model
- Gapped boundaries, indecomposable modules, and Lagrangian algebras
- Ground state degeneracy, boundary excitations, condensation
- Boundary defects
- Bulk symmetry defects
- Crossed condensation
- Braiding boundary defects
- Outlook

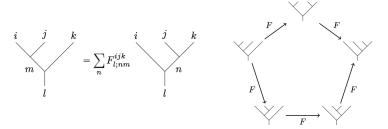
- ullet A topological phase of matter is an equivalence class ${\cal H}$ of gapped Hamiltonians that realize a topological quantum field theory at low energy
- One family of such Hamiltonians is the Levin-Wen model

- Input: trivalent lattice (e.g. honeycomb)
- Each edge: element from a unitary fusion category (UFC) $\mathcal C$

Unitary fusion categories (UFCs)

Some key properties of a UFC \mathcal{C} over \mathbb{C} :

- Monoidal structure:
 - Tensor product ⊗: fusion
 - Tensor unit 1: vacuum
 - ullet Functorial associativity and unit isomorphisms, encoded by F symbols



Unitary fusion categories (UFCs)

Key properties: [Cont'd]

- Semisimplicity: All objects are direct sums of simple objects
 - Finite number of simple objects, 1 is simple
 - Fusion rules: $x \otimes y \rightarrow \bigoplus_{C} N_{xy}^{z} z$
- \mathbb{C} -linear: $\mathsf{Hom}(x,y)$ is a \mathbb{C} -vector space for all $x,y\in\mathsf{Obj}(\mathcal{C}),\otimes\mathsf{bilinear}$ on morphisms

Examples: Vec_G , Rep(G), ...

- Hamiltonian: vertex (charge conservation) and plaquette (zero-flux) constraints
- Realizes TQFT given by Drinfeld center $\mathcal{Z}(\mathcal{C})$

 $\mathcal{Z}(\mathcal{C})$ is a modular tensor category (MTC):

- MTC is a UFC, simple objects form anyon system
- Braiding structure: σ_{ab} : $a \otimes b \rightarrow b \otimes a$ for all a, b (R symbols)
- Non-degeneracy: only transparent anyon is unit

Theorem

If C = Rep(G) or Vec_G , $\mathcal{B} = \mathcal{Z}(C)$, anyon labels in \mathcal{B} parameterized by (C, π) : conjugacy class and irrep of E(C)

- Example: $\mathfrak{D}(\mathbb{Z}_p)$, the \mathbb{Z}_p toric code
 - Anyons: $e^{j}m^{k}$, $0 \le j, k \le p-1$
 - Fusion rules: $e^{j_1}m^{k_1}\otimes e^{j_2}m^{k_2}\rightarrow e^{j_1+j_2}m^{k_1+k_2}$ (mod p)
 - Braiding: $R^{e^j m^k} = e^{2\pi i jk/p}$

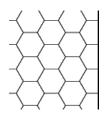
• Example: $\mathfrak{D}(S_3)$

Table: Fusion rules of $\mathfrak{D}(S_3)$

8	Α	В	С	D	Ε	F	G	Н
A	Α	В	С	D	Е	F	G	Н
В	В	Α	С	Ε	D	F	G	Н
C	С	С	$A \oplus B \oplus C$	$D \oplus E$	$D \oplus E$	$G \oplus H$	$F \oplus H$	$F \oplus G$
D	D	Ε	$D \oplus E$	$A \oplus C \oplus F$ $\oplus G \oplus H$	$B \oplus C \oplus F$ $\oplus G \oplus H$	$D \oplus E$	$D \oplus E$	$D \oplus E$
E	Ε	D	$D \oplus E$	$B \oplus C \oplus F$ $\oplus G \oplus H$	$A \oplus C \oplus F$ $\oplus G \oplus H$	$D \oplus E$	$D \oplus E$	$D \oplus E$
F	F	F	$G \oplus H$	$D \oplus E$	$D \oplus E$	$A \oplus B \oplus F$	$H \oplus C$	$G \oplus C$
G	G	G	$F \oplus H$	$D \oplus E$	$D \oplus E$	$H \oplus C$	$A \oplus B \oplus G$	$F \oplus C$
Н	Н	Н	$F \oplus G$	$D \oplus E$	$D \oplus E$	$G \oplus C$	$F \oplus C$	$A \oplus B \oplus H$

Gapped boundaries: indecomposable modules

- A gapped boundary is an equivalence class of gapped local (commuting) extensions of H ∈ H to the boundary
- Levin-Wen model: indecomposable (left) module category $\mathcal M$ of $\mathcal C$ (Kitaev and Kong)
 - Category $\mathcal M$ with (left) $\mathcal C$ -action: $\mathcal C\otimes\mathcal M\to\mathcal M$, associativity/unit constraints
 - Not direct sum of other such categories



Gapped boundaries: indecomposable modules

Theorem (Ostrik)

When $\mathcal{C} = \operatorname{Rep}(G)$ or Vec_G and \mathcal{B} is a quantum double, the indecomposable modules \mathcal{M} of $\mathcal{C} \leftrightarrow \operatorname{pairs}(K, \omega)$, $K \subseteq G$ (up to conjugation), $\omega \in H^2(K, \mathbb{C}^{\times})$.

Gapped boundaries: indecomposable modules

ullet Example: $\mathfrak{D}(\mathbb{Z}_p)$

Definition

A Lagrangian algebra $\mathcal A$ in a MTC $\mathcal B$ is an algebra with a multiplication $m:\mathcal A\otimes\mathcal A\to\mathcal A$ such that:

- ① \mathcal{A} is commutative, i.e. $\mathcal{A} \otimes \mathcal{A} \xrightarrow{c_{\mathcal{A}\mathcal{A}}} \mathcal{A} \otimes \mathcal{A} \xrightarrow{m} \mathcal{A}$ equals $\mathcal{A} \otimes \mathcal{A} \xrightarrow{m} \mathcal{A}$, where $c_{\mathcal{A}\mathcal{A}}$ is the braiding in \mathcal{B} .
- ② \mathcal{A} is *separable*, i.e. the multiplication morphism m admits a splitting $\mu: \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ a morphism of $(\mathcal{A}, \mathcal{A})$ -bimodules.
- 3 \mathcal{A} is connected, i.e. $\mathsf{Hom}_{\mathcal{B}}(\mathbf{1}_{\mathcal{B}},\mathcal{A})=\mathbb{C}$
- The Frobenius-Perron dimension (a.k.a. quantum dimension) of $\mathcal A$ is the square root of that of the MTC $\mathcal B$,

$$\mathsf{FPdim}(\mathcal{A})^2 = \mathsf{FPdim}(\mathcal{B}).$$
 (1)

Theorem (Davydov, Müger, Nikshych, Ostrik)

There exists a 1-1 correspondence between the indecomposable modules of C and the Lagrangian algebras of B = Z(C).

Corollary

Gapped boundaries in anyon system $\mathcal{B} \leftrightarrow \mathsf{Lagrangian}$ algebras \mathcal{A} in \mathcal{B}

 $\ensuremath{\mathcal{A}}$ is the collection of bulk bosonic anyons that condense to vacuum on the boundary

Theorem (Fröhlich, Fuchs, Runkel, Schweigert)

 $\mathcal A$ is a commutative algebra in a MTC $\mathcal B$ if and only if the object $\mathcal A$ decomposes into simple objects as $\mathcal A=\oplus_s n_s s$, with $\theta_s=1$ (i.e. s is bosonic) for all s such that $n_s\neq 0$.

Theorem (C, Cheng, Wang)

A commutative connected algebra $\mathcal{A}=\oplus_s n_s s$ with $\mathsf{FPdim}(\mathcal{A})^2=\mathsf{FPdim}(\mathcal{B})$ is a Lagrangian algebra in the MTC \mathcal{B} if and only if the following inequality holds for all $a,b\in\mathsf{Obj}(\mathcal{B})$:

$$n_a n_b \le \sum_c N_{ab}^c n_c \tag{2}$$

where N_{ab}^c are the coefficients given by the fusion rules of \mathcal{B} .

ullet Example: Lagrangian algebras in $\mathfrak{D}(\mathbb{Z}_p)$

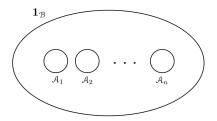
• Example: Lagrangian algebras in $\mathfrak{D}(S_3)$

Table: Fusion rules of $\mathfrak{D}(S_3)$

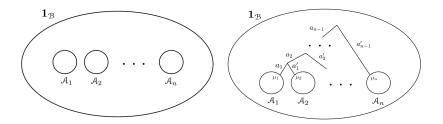
\otimes	Α	В	С	D	E	F	G	Н
Α	Α	В	С	D	Е	F	G	Н
В	В	Α	С	Ε	D	F	G	Н
С	С	С	$A \oplus B \oplus C$	$D \oplus E$	$D \oplus E$	$G \oplus H$	$F \oplus H$	$F \oplus G$
D	D	Ε	$D \oplus E$	$A \oplus C \oplus F$ $\oplus G \oplus H$	$B \oplus C \oplus F$ $\oplus G \oplus H$	$D \oplus E$	$D \oplus E$	$D \oplus E$
Ε	Ε	D	$D \oplus E$	$B \oplus C \oplus F$ $\oplus G \oplus H$	$A \oplus C \oplus F$ $\oplus G \oplus H$	$D \oplus E$	$D \oplus E$	$D \oplus E$
F	F	F	$G \oplus H$	$D \oplus E$	$D \oplus E$	$A \oplus B \oplus F$	$H \oplus C$	$G \oplus C$
G	G	G	$F \oplus H$	$D \oplus E$	$D \oplus E$	$H \oplus C$	$A \oplus B \oplus G$	$F \oplus C$
Н	Н	Н	$F \oplus G$	$D \oplus E$	$D \oplus E$	$G \oplus C$	$F \oplus C$	$A \oplus B \oplus H$

- ullet ${\cal A}$ is collection of bulk anyons that condense to vacuum
- Algebraic model: *n* holes on a plane

- ullet ${\cal A}$ is collection of bulk anyons that condense to vacuum
- Algebraic model: *n* holes on a plane

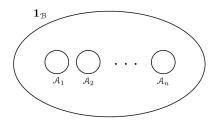


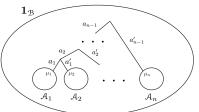
- ullet ${\cal A}$ is collection of bulk anyons that condense to vacuum
- Algebraic model: *n* holes on a plane



- ullet ${\cal A}$ is collection of bulk anyons that condense to vacuum
- Algebraic model: *n* holes on a plane

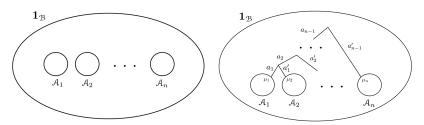
G.S. =
$$\mathsf{Hom}(\mathbf{1}_B, \mathcal{A}_1 \otimes \mathcal{A}_2 \otimes ... \otimes \mathcal{A}_n)$$
 (3)





- ullet ${\cal A}$ is collection of bulk anyons that condense to vacuum
- Algebraic model: n holes on a plane

$$G.S. = Hom(\mathbf{1}_B, \mathcal{A}_1 \otimes \mathcal{A}_2 \otimes ... \otimes \mathcal{A}_n)$$
(3)



• n = 2 is used for a qudit encoding (C, Cheng, Wang)

ullet Example: $\mathfrak{D}(\mathbb{Z}_p)$

In general, bulk anyons may not condense to vacuum ightarrow become boundary excitations

Definition

Let $\mathcal B$ be a MTC, $\mathcal A\in\operatorname{Obj}\mathcal B$ a Lagrangian algebra. The *quotient* category $\mathcal B/\mathcal A$ is the category s.t.

- $② \operatorname{\mathsf{Hom}}_{\mathcal{B}/\mathcal{A}}(X,Y) = \operatorname{\mathsf{Hom}}_{\mathcal{B}}(X,\mathcal{A} \otimes Y).$

The resulting category of excitations is the functor category $Fun_{\mathcal{C}}(\mathcal{M},\mathcal{M})$ (a UFC)

- ullet The condensation functor $F:\mathcal{B} o\mathcal{B}/\mathcal{A}$ is a tensor functor
- Adjoint $I: \mathcal{B}/\mathcal{A} \to \mathcal{B}$ pulls excitation out of boundary, into bulk

• Example: $\mathfrak{D}(\mathbb{Z}_p)$

• Example: $\mathfrak{D}(S_3)$

Review

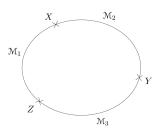
- ullet Levin-Wen model: UFC $\mathcal{C} o \mathsf{MTC} \ \mathcal{B} = \mathcal{Z}(\mathcal{C})$
- Gapped boundaries as indecomposable modules or Lagrangian algebras
- Ground state degeneracy
- Condensation and boundary excitations

Boundary defects

• Thus far, one boundary type per hole

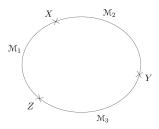
Boundary defects

- Thus far, one boundary type per hole
- $\bullet \ \, \text{Multiple boundary types per hole} \to \\ \text{boundary defects}$



Boundary defects

- Thus far, one boundary type per hole
- Multiple boundary types per hole \rightarrow boundary defects
- Boundary defects category: $\operatorname{Fun}_{\mathcal{C}}(\mathcal{M}_i, \mathcal{M}_j)$ (Kitaev and Kong)



Theorem (Ostrik)

Let $\mathcal{C}=\operatorname{Rep}(G)$ or Vec_G . Suppose gapped boundaries \mathcal{A}_1 , \mathcal{A}_2 (\mathcal{M}_1 , \mathcal{M}_2) are given by subgroups K_1 , K_2 (and trivial cocycles). Then simple objects in $\operatorname{Fun}_{\mathcal{C}}(\mathcal{M}_1,\mathcal{M}_2)$ are parametrized by pairs (T,R), where $T=K_1r_TK_2$ is a double coset, and R is an irreducible representation of the stabilizer $(K_1,K_2)^{r_T}=K_1\cap r_TK_2r_T^{-1}$.

Theorem (Yamagami)

The quantum dimension of (T, R) is

$$\mathsf{FPdim}(T,R) = \frac{\sqrt{|K_1||K_2|}}{|K_1 \cap r_T K_2 r_T^{-1}|} \cdot \mathsf{Dim}(R). \tag{4}$$

• Example: $\mathfrak{D}(\mathbb{Z}_p)$

• Example: $\mathfrak{D}(S_3)$

- $C_{ij} = \operatorname{Fun}_{\mathcal{C}}(\mathcal{M}_i, \mathcal{M}_i)$ is not a fusion category
- $\Gamma = \{C_{ij}\}$ (all possible excitations and boundary defects) is a multi-fusion category
 - 1 is not simple
 - Can compute quantum dimensions, etc.
- For TQC: Can we obtain braiding?
- Solution: Examine bulk counterparts

Condensation

- Recall: condensation functor $F: \mathcal{B} = \mathcal{Z}(\mathcal{C}) \to \mathcal{B}/\mathcal{A} = \mathcal{C}_{ii}$ = Fun_{\mathcal{C}}(\mathcal{M}_i, \mathcal{M}_i) and adjoint I
- Want a similar construction for boundary defects

Bulk symmetry defects

- Symmetries of a MTC: $Aut^{br}_{\infty}(\mathcal{B})$
- Symmetry: $\rho: G o \operatorname{\mathsf{Aut}}^{\mathsf{br}}_{\otimes}(\mathcal{B})$
- Bulk symmetry defects form a *G*-graded fusion category (Barkeshli, Bonderson, Cheng, Wang):

$$\mathcal{B}_{G} = \bigoplus_{G} \mathcal{B}_{g}, \qquad \mathcal{B}_{0} = \mathcal{B}$$
 (5)

Bulk symmetry defects

• Fusion of symmetry defects respects group multiplication: $a_g \otimes b_h \rightarrow c_{gh}$

• G-crossed braiding (Barkeshli, Bonderson, Cheng, Wang):

$$R^{a_{\mathbf{g}}b_{\mathbf{h}}} \; = \; \sum_{b_{\mathbf{h}}} b_{\mathbf{h}} \\ \bar{\mathbf{h}}_{a_{\mathbf{g}}} \; = \; \sum_{c,\mu,\nu} \sqrt{\frac{d_c}{d_a d_b}} \left[R^{a_{\mathbf{g}}b_{\mathbf{h}}}_{c_{\mathbf{g}\mathbf{h}}} \right]_{\mu\nu} \quad b_{\mathbf{h}}^{b_{\mathbf{h}}} b_{\mathbf{h}}^{b_{\mathbf{h}}}$$

Bulk symmetry defects

ullet Example: $\mathfrak{D}(\mathbb{Z}_p)$

Suppose $\mathcal{B} = \mathcal{Z}(\mathcal{C})$, $\rho : G \to \operatorname{Aut}^{\operatorname{br}}_{\otimes}(\mathcal{B})$, $\mathcal{A}_i \in \mathcal{B}$ a gapped boundary. Then $\mathcal{A}_{j_g} := \rho_g(\mathcal{A}) \in \mathcal{B}$ is a gapped boundary.

Suppose $\mathcal{B} = \mathcal{Z}(\mathcal{C})$, $\rho : G \to \operatorname{Aut}^{\operatorname{br}}_{\otimes}(\mathcal{B})$, $\mathcal{A}_i \in \mathcal{B}$ a gapped boundary. Then $\mathcal{A}_{j_g} := \rho_g(\mathcal{A}) \in \mathcal{B}$ is a gapped boundary. Recall:

Definition

Let \mathcal{B} be a MTC, $\mathcal{A}_i \in \text{Obj } \mathcal{B}$ a Lagrangian algebra. The *quotient* category $\mathcal{B}/\mathcal{A}_i$ is the category s.t.

- $② \operatorname{\mathsf{Hom}}_{\mathcal{B}/\mathcal{A}_i}(X,Y) = \operatorname{\mathsf{Hom}}_{\mathcal{B}}(X,\mathcal{A}_i \otimes Y).$

Suppose $\mathcal{B} = \mathcal{Z}(\mathcal{C})$, $\rho : G \to \operatorname{Aut}^{\operatorname{br}}_{\otimes}(\mathcal{B})$, $\mathcal{A}_i \in \mathcal{B}$ a gapped boundary. Then $\mathcal{A}_{j_g} := \rho_g(\mathcal{A}) \in \mathcal{B}$ is a gapped boundary. Recall:

Definition

Let \mathcal{B} be a MTC, $\mathcal{A}_i \in \text{Obj } \mathcal{B}$ a Lagrangian algebra. The *quotient* category $\mathcal{B}/\mathcal{A}_i$ is the category s.t.

- $② \operatorname{\mathsf{Hom}}_{\mathcal{B}/\mathcal{A}_i}(X,Y) = \operatorname{\mathsf{Hom}}_{\mathcal{B}}(X,\mathcal{A}_i \otimes Y).$

Replace the MTC \mathcal{B} with the G-graded category \mathcal{B}_G .

Suppose $\mathcal{B} = \mathcal{Z}(\mathcal{C})$, $\rho : G \to \operatorname{Aut}^{\operatorname{br}}_{\otimes}(\mathcal{B})$, $\mathcal{A}_i \in \mathcal{B}$ a gapped boundary. Then $\mathcal{A}_{j_g} := \rho_g(\mathcal{A}) \in \mathcal{B}$ is a gapped boundary. Recall:

Definition

Let \mathcal{B} be a MTC, $\mathcal{A}_i \in \text{Obj } \mathcal{B}$ a Lagrangian algebra. The *quotient* category $\mathcal{B}/\mathcal{A}_i$ is the category s.t.

- $② \operatorname{\mathsf{Hom}}_{\mathcal{B}/\mathcal{A}_i}(X,Y) = \operatorname{\mathsf{Hom}}_{\mathcal{B}}(X,\mathcal{A}_i \otimes Y).$

Replace the MTC \mathcal{B} with the G-graded category \mathcal{B}_G . Result:

$$F: \mathcal{B}_G \to \mathcal{Q}(G, \mathcal{A}_i) = \bigoplus_{g \in G} \mathcal{C}_{ij_g} = \bigoplus_{g \in G} \operatorname{Fun}_{\mathcal{C}}(\mathcal{M}_i, \mathcal{M}_{j_g})$$
(6)

(C, Cheng, Wang)

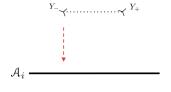
Crossed condensation functor:

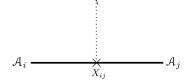
$$F:\mathcal{B}_G\to\mathcal{Q}(G,\mathcal{A}_i)=\oplus_{g\in G}\mathcal{C}_{ij_g}=\oplus_{g\in G}\operatorname{Fun}_\mathcal{C}(\mathcal{M}_i,\mathcal{M}_{j_g})$$

Crossed condensation functor:

$$F:\mathcal{B}_G\to\mathcal{Q}(G,\mathcal{A}_i)=\oplus_{g\in G}\mathcal{C}_{ij_g}=\oplus_{g\in G}\operatorname{Fun}_\mathcal{C}(\mathcal{M}_i,\mathcal{M}_{j_g})$$

Physical explanation:





• Example: $\mathfrak{D}(\mathbb{Z}_p)$

• Example: $\mathfrak{D}(S_3)$

Braiding boundary defects

Theorem (C, Cheng, Wang)

Let \mathcal{M}_i , \mathcal{M}_j be indecomposable module categories of \mathcal{C} . Suppose:

- $oldsymbol{0}$ $\mathcal{C}_{ii}=\mathcal{C}_{jj}$ as fusion categories, and
- ② C_{ij} is an invertible $C_{ii} C_{jj}$ bimodule.

Then the boundary defects in C_{ij} can be projectively braided with those in C_{ji} , and with the boundary excitations in C_{jj} . Furthermore, there is a canonical choice of this braiding and a systematic method to compute the projective representation.

Braiding done in the bulk (through correspondence):

$$X_{ij} \otimes X_{ji} \to I(X_{ij}) \otimes I(X_{ji}) \xrightarrow{G^{\times}} \rho_1(I(X_{ji})) \otimes I(X_{ij}) \to \rho_1(X_{ji}) \otimes X_{ij}.$$
 (7)

Braiding boundary defects

ullet Example: $\mathfrak{D}(\mathbb{Z}_p)$

Outlook

Known:

- Gapped boundaries as indecomposable modules, Lagrangian algebras
- Boundary excitations, defects in multi-fusion category
- \bullet Bulk-edge correspondence for certain boundary defects, symmetry defects \to braiding

Goal:

- Other boundary defects not covered by this correspondence?
- New symmetry in the bulk?