Defects between Gapped Boundaries in (2+1)DTopological Phases of Matter

Iris Cong, Meng Cheng, Zhenghan Wang

cong@g.harvard.edu

Department of Physics Harvard University, Cambridge, MA

January 13th, 2018

Ref.: Phys. Rev. B 96, 195129 (2017) (arXiv:1703.03564)

Introduction and Motivations

- (2+1)D topological phases
 - (Non-abelian) bulk anyons often used for topological quantum computation (TQC)
 - Difficult to realize

Introduction and Motivations

- (2+1)D topological phases
 - (Non-abelian) bulk anyons often used for topological quantum computation (TQC)
 - Difficult to realize
- ullet Want non-abelian objects arising from abelian materials o study gapped boundaries and defects

Introduction and Motivations

- (2+1)D topological phases
 - (Non-abelian) bulk anyons often used for topological quantum computation (TQC)
 - Difficult to realize
- ullet Want non-abelian objects arising from abelian materials o study gapped boundaries and defects
- Gapped boundaries and boundary defects found in physical (FQH/SC/FM) systems (Lindner, Berg, Refael, Stern)

- Review:
 - Levin-Wen model
 - Gapped boundaries, indecomposable modules, and Lagrangian algebras
 - Condensation

- Review:
 - Levin-Wen model
 - Gapped boundaries, indecomposable modules, and Lagrangian algebras
 - Condensation
- Main Contributions:
 - Boundary defects through multi-fusion category
 - Relation with bulk symmetry defects: crossed condensation
 - Braiding boundary defects

- Review:
 - Levin-Wen model
 - Gapped boundaries, indecomposable modules, and Lagrangian algebras
 - Condensation
- Main Contributions:
 - Boundary defects through multi-fusion category
 - Relation with bulk symmetry defects: crossed condensation
 - Braiding boundary defects
- Outlook

- Review:
 - Levin-Wen model
 - Gapped boundaries, indecomposable modules, and Lagrangian algebras
 - Condensation
- Main Contributions:
 - Boundary defects through multi-fusion category
 - Relation with bulk symmetry defects: crossed condensation
 - Braiding boundary defects
- Outlook
- (Ref. for gapped boundaries: C, Cheng, Wang, Comm. Math. Phys. (2017) 355: 645.)

The Levin-Wen model

- A topological phase of matter is an equivalence class H of gapped Hamiltonians that realize a topological quantum field theory (TQFT) at low energy
- One family of such Hamiltonians is the Levin-Wen model

The Levin-Wen model

- Input: trivalent lattice (e.g. honeycomb), unitary fusion category (UFC) $\mathcal C$
- Realizes TQFT given by Drinfeld center $\mathcal{Z}(\mathcal{C})$
 - $\mathcal{Z}(C)$ is a modular tensor category (MTC): simple objects form anyon system (UFC + non-degenerate braiding)

The Levin-Wen model: Examples

• Example: $\mathfrak{D}(\mathbb{Z}_p)$, the \mathbb{Z}_p toric code

• Anyons: $e^{j}m^{k}$, $0 \le j, k \le p-1$, $e^{j_1}m^{k_1} \otimes e^{j_2}m^{k_2} \to e^{j_1+j_2}m^{k_1+k_2}$ (mod p)

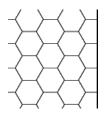
• Example: $\mathfrak{D}(S_3)$

Table: Fusion rules of $\mathfrak{D}(S_3)$

\otimes	A	В	С	D	E	F	G	Н
Α	Α	В	С	D	Ε	F	G	Н
В	В	Α	С	Е	D	F	G	Н
С	С	С	$A \oplus B \oplus C$	$D \oplus E$	$D \oplus E$	$G \oplus H$	$F \oplus H$	$F \oplus G$
D	D	Ε	$D \oplus E$	$A \oplus C \oplus F$ $\oplus G \oplus H$	$B \oplus C \oplus F$ $\oplus G \oplus H$	$D \oplus E$	$D \oplus E$	$D \oplus E$
Ε	Ε	D	$D \oplus E$	$B \oplus C \oplus F$ $\oplus G \oplus H$	$A \oplus C \oplus F$ $\oplus G \oplus H$	$D \oplus E$	$D \oplus E$	$D \oplus E$
F	F	F	$G \oplus H$	$D \oplus E$	$D \oplus E$	$A \oplus B \oplus F$	$H \oplus C$	$G \oplus C$
G	G	G	$F \oplus H$	$D \oplus E$	$D \oplus E$	$H \oplus C$	$A \oplus B \oplus G$	$F \oplus C$
Н	Н	Н	$F \oplus G$	$D \oplus E$	$D \oplus E$	$G \oplus C$	$F \oplus C$	$A \oplus B \oplus H$

Gapped boundaries: indecomposable modules

- A gapped boundary is an equivalence class of gapped local (commuting) extensions of H ∈ H to the boundary
- Levin-Wen model: indecomposable (left) module category \mathcal{M} of \mathcal{C} (Kitaev and Kong)
 - Category \mathcal{M} with (left) \mathcal{C} -action: $\mathcal{C} \otimes \mathcal{M} \to \mathcal{M}$, associativity/unit constraints
 - Not direct sum of other such categories



Gapped boundaries: indecomposable modules

Theorem (Ostrik)

When $\mathcal{C} = \operatorname{Rep}(G)$ or Vec_G and \mathcal{B} is a quantum double, the indecomposable modules \mathcal{M} of $\mathcal{C} \leftrightarrow \operatorname{pairs}(K, \omega)$, $K \subseteq G$ (up to conjugation), $\omega \in H^2(K, \mathbb{C}^{\times})$.

Definition

A Lagrangian algebra $\mathcal A$ in a MTC $\mathcal B$ is an object with a multiplication $m:\mathcal A\otimes\mathcal A\to\mathcal A$ such that:

- ① \mathcal{A} is commutative, i.e. $\mathcal{A} \otimes \mathcal{A} \xrightarrow{c_{\mathcal{A}\mathcal{A}}} \mathcal{A} \otimes \mathcal{A} \xrightarrow{m} \mathcal{A}$ equals $\mathcal{A} \otimes \mathcal{A} \xrightarrow{m} \mathcal{A}$, where $c_{\mathcal{A}\mathcal{A}}$ is the braiding in \mathcal{B} .
- ② \mathcal{A} is *separable*, i.e. the multiplication morphism m admits a splitting $\mu: \mathcal{A} \to \mathcal{A} \otimes \mathcal{A}$ a morphism of $(\mathcal{A}, \mathcal{A})$ -bimodules.
- $oldsymbol{\Im}$ \mathcal{A} is connected, i.e. $\mathsf{Hom}_{\mathcal{B}}(\mathbf{1}_{\mathcal{B}},\mathcal{A})=\mathbb{C}$
- The Frobenius-Perron dimension (quantum dimension) of \mathcal{A} is the square root of that of the MTC \mathcal{B} ,

$$\mathsf{FPdim}(\mathcal{A})^2 = \mathsf{FPdim}(\mathcal{B}).$$
 (1)

Theorem (Davydov, Müger, Nikshych, Ostrik)

There exists a 1-1 correspondence between the indecomposable modules of C and the Lagrangian algebras of B = Z(C).

Corollary

Gapped boundaries in anyon system $\mathcal{B} \leftrightarrow \mathsf{Lagrangian}$ algebras \mathcal{A} in \mathcal{B}

 $\ensuremath{\mathcal{A}}$ is the collection of bulk anyons that condense to vacuum on the boundary

Examples:

• $\mathfrak{D}(\mathbb{Z}_p)$:

$$K_1 = \{1\}$$
 $A_1 = 1 + e + ... + e^{p-1}$
 $K_2 = \mathbb{Z}_p$ $A_2 = 1 + m + ... + m^{p-1}$

 \bullet $\mathfrak{D}(S_3)$:

$$K_1 = \{1\}$$
 $A_1 = A + B + 2C$
 $K_2 = \mathbb{Z}_3$ $A_2 = A + B + 2F$
 $K_3 = \mathbb{Z}_2$ $A_3 = A + C + D$
 $K_4 = S_3$ $A_4 = A + F + D$

Condensation

In general, bulk anyons may not condense to vacuum ightarrow condense to boundary excitations

Definition

Let $\mathcal B$ be a MTC, $\mathcal A\in\operatorname{Obj}\mathcal B$ a Lagrangian algebra. The *quotient* category $\mathcal B/\mathcal A$ is the category s.t.

- $② \operatorname{\mathsf{Hom}}_{\mathcal{B}/\mathcal{A}}(X,Y) = \operatorname{\mathsf{Hom}}_{\mathcal{B}}(X,\mathcal{A} \otimes Y).$

The resulting category of excitations is the functor category $\operatorname{Fun}_{\mathcal{C}}(\mathcal{M},\mathcal{M})$ (a UFC)¹

Condensation

- The condensation functor $F: \mathcal{B} \to \mathcal{B}/\mathcal{A}$ is a tensor functor
- Adjoint $I: \mathcal{B}/\mathcal{A} \to \mathcal{B}$ pulls excitation out of boundary, into bulk

Condensation: Examples

Examples:

- $\mathfrak{D}(\mathbb{Z}_p)$:
 - $A_1 = 1 + e + ... + e^{p-1}$, $e^a m^b \mapsto m^b$, $Fun_{\mathcal{C}}(\mathcal{M}_1, \mathcal{M}_1) = \{1, m, ... m^{p-1}\}$
- $\mathfrak{D}(S_3)$:
 - $A_2 = A + C + D$:

а	F(a)
Α	Α
В	В
С	A + B
D	B + F
Ε	B + F
F, G, H	F

•
$$A_1 = A + B + 2C$$
:

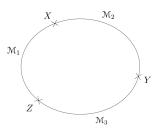
а	F(a)		
Α	1		
В	1		
С	2 · 1		
D	$s + sr + sr^2$		
Ε	$s + sr + sr^2$		
F, G, H	$r + r^2$		

Boundary defects

• Thus far, one boundary type at a time

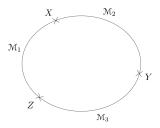
Boundary defects

- Thus far, one boundary type at a time
- $\bullet \ \, \text{Multiple adjacent boundary types} \to \\ \text{boundary defects}$



Boundary defects

- Thus far, one boundary type at a time
- $\hbox{ Multiple adjacent boundary types} \rightarrow \\ \hbox{ boundary defects}$
- Boundary defects category: $\operatorname{Fun}_{\mathcal{C}}(\mathcal{M}_i, \mathcal{M}_j)$ (Kitaev and Kong)



Boundary defects (finite groups)

Theorem (Ostrik)

Let $\mathcal{C}=\operatorname{Rep}(G)$ or Vec_G . Suppose gapped boundaries \mathcal{A}_1 , \mathcal{A}_2 (\mathcal{M}_1 , \mathcal{M}_2) are given by subgroups K_1 , K_2 (and trivial cocycles). Then simple objects in $\operatorname{Fun}_{\mathcal{C}}(\mathcal{M}_1,\mathcal{M}_2)$ are parametrized by pairs (T,R), where $T=K_1r_TK_2$ is a double coset, and R is an irreducible representation of the stabilizer $(K_1,K_2)^{r_T}=K_1\cap r_TK_2r_T^{-1}$.

Theorem (Yamagami)

The quantum dimension of (T, R) is

$$\mathsf{FPdim}(T,R) = \frac{\sqrt{|K_1||K_2|}}{|K_1 \cap r_T K_2 r_T^{-1}|} \cdot \mathsf{Dim}(R). \tag{2}$$

Boundary defects: Examples

Examples

- $\mathfrak{D}(\mathbb{Z}_p)$: $K_1 = \{1\}$, $K_2 = \mathbb{Z}_p$. Single (simple) boundary defect of quantum dimension \sqrt{p}
- $\mathfrak{D}(S_3)$:

	\mathcal{A}_1	\mathcal{A}_2	A_3	\mathcal{A}_4
$A_1 = A + B + 2C / K_1 = \{1\}$	Vec_{S_3}	$\left\{\sqrt{3},\sqrt{3}\right\}$	$\left\{\sqrt{2},\sqrt{2},\sqrt{2}\right\}$	$\left\{\sqrt{6}\right\}$
$\mathcal{A}_2 = A + B + 2F / K_2 = \mathbb{Z}_3$	$\left\{\sqrt{3},\sqrt{3}\right\}$	Vec _{S3}	$\left\{\sqrt{6}\right\}$	$\left\{\sqrt{2},\sqrt{2},\sqrt{2}\right\}$
$\mathcal{A}_3 = A + C + D / K_3 = \mathbb{Z}_2$	$\left\{\sqrt{2},\sqrt{2},\sqrt{2}\right\}$	$\left\{\sqrt{6}\right\}$	Rep(S ₃)	$\left\{\sqrt{3},\sqrt{3}\right\}$
$\mathcal{A}_4 = A + F + D / K_4 = S_3$	$\left\{\sqrt{6}\right\}$	$\left\{\sqrt{2},\sqrt{2},\sqrt{2}\right\}$	$\left\{\sqrt{3},\sqrt{3}\right\}$	$Rep(S_3)$

Boundary defects: multi-fusion category

- $C_{ij} = \operatorname{Fun}_{\mathcal{C}}(\mathcal{M}_i, \mathcal{M}_j)$ is not a fusion category
- $\Gamma = \{C_{ij}\}$ (all possible excitations and boundary defects) is a multi-fusion category
 - 1 is not simple
 - Can compute quantum dimensions, etc.
- For TQC: Can we obtain braiding?
- Solution: Examine bulk counterparts

Condensation

- Recall: condensation functor $F: \mathcal{B} = \mathcal{Z}(\mathcal{C}) \to \mathcal{B}/\mathcal{A} = \mathcal{C}_{ii}$ = Fun_{\mathcal{C}}(\mathcal{M}_i, \mathcal{M}_i) and adjoint I
- Want a similar construction for boundary defects

Bulk symmetry defects

- ullet Symmetries of a MTC: $\operatorname{Aut}^{\operatorname{br}}_{\otimes}(\mathcal{B})$
- ullet Global symmetry group: $ho: G
 ightarrow \operatorname{\mathsf{Aut}}^{\mathsf{br}}_{\otimes}(\mathcal{B})$
- Bulk symmetry defects form a *G*-graded fusion category (Barkeshli, Bonderson, Cheng, Wang):

$$\mathcal{B}_G = \bigoplus_{g \in G} \mathcal{B}_g, \qquad \mathcal{B}_0 = \mathcal{B} \tag{3}$$

Bulk symmetry defects

• Fusion of symmetry defects respects group multiplication: $a_{\sigma}\otimes b_h \to c_{\sigma h}$

• G-crossed braiding (Barkeshli, Bonderson, Cheng, Wang):

$$R^{a_{\mathbf{g}}b_{\mathbf{h}}} \; = \; \sum_{b_{\mathbf{h}}} b_{\mathbf{h}} \\ \bar{\mathbf{h}}_{a_{\mathbf{g}}} \; = \; \sum_{c,\mu,\nu} \sqrt{\frac{d_c}{d_a d_b}} \left[R^{a_{\mathbf{g}}b_{\mathbf{h}}}_{c_{\mathbf{g}\mathbf{h}}} \right]_{\mu\nu} \quad b_{\mathbf{h}}^{b_{\mathbf{h}}} b_{\mathbf{h}}^{b_{\mathbf{h}}}$$

Bulk symmetry defects: Examples

•
$$\mathfrak{D}(\mathbb{Z}_p)$$
: $G = \mathbb{Z}_2$, $e \leftrightarrow m$, $\mathcal{B}_1 = \{\tau_0, ... \tau_{p-1}\}$, $\dim \tau_i = \sqrt{p}$

•
$$\mathfrak{D}(S_3)$$
: $G = \mathbb{Z}_2$, $C \leftrightarrow F$, $\mathcal{B}_1 = \{\sqrt{3}, \sqrt{3}, \sqrt{3}, \sqrt{3}, 2\sqrt{3}, 2\sqrt{3}\}$

Suppose $\mathcal{B} = \mathcal{Z}(\mathcal{C})$, $\rho : G \to \operatorname{Aut}^{\operatorname{br}}_{\otimes}(\mathcal{B})$, $\mathcal{A}_i \in \mathcal{B}$ a gapped boundary. Then $\mathcal{A}_{j_g} := \rho_g(\mathcal{A}_i) \in \mathcal{B}$ is a gapped boundary.

Suppose $\mathcal{B} = \mathcal{Z}(\mathcal{C})$, $\rho : G \to \operatorname{Aut}^{\operatorname{br}}_{\otimes}(\mathcal{B})$, $\mathcal{A}_i \in \mathcal{B}$ a gapped boundary. Then $\mathcal{A}_{j_g} := \rho_g(\mathcal{A}_i) \in \mathcal{B}$ is a gapped boundary. Recall:

Definition

Let \mathcal{B} be a MTC, $\mathcal{A}_i \in \text{Obj } \mathcal{B}$ a Lagrangian algebra. The *quotient* category $\mathcal{B}/\mathcal{A}_i$ is the category s.t.

- $② \operatorname{\mathsf{Hom}}_{\mathcal{B}/\mathcal{A}_i}(X,Y) = \operatorname{\mathsf{Hom}}_{\mathcal{B}}(X,\mathcal{A}_i \otimes Y).$

Suppose $\mathcal{B} = \mathcal{Z}(\mathcal{C})$, $\rho : G \to \operatorname{Aut}^{\operatorname{br}}_{\otimes}(\mathcal{B})$, $\mathcal{A}_i \in \mathcal{B}$ a gapped boundary. Then $\mathcal{A}_{j_g} := \rho_g(\mathcal{A}_i) \in \mathcal{B}$ is a gapped boundary. Recall:

Definition

Let \mathcal{B} be a MTC, $\mathcal{A}_i \in \text{Obj } \mathcal{B}$ a Lagrangian algebra. The *quotient* category $\mathcal{B}/\mathcal{A}_i$ is the category s.t.

- $② \operatorname{\mathsf{Hom}}_{\mathcal{B}/\mathcal{A}_i}(X,Y) = \operatorname{\mathsf{Hom}}_{\mathcal{B}}(X,\mathcal{A}_i \otimes Y).$

Replace the MTC \mathcal{B} with the G-graded category \mathcal{B}_G .

Suppose $\mathcal{B} = \mathcal{Z}(\mathcal{C})$, $\rho : G \to \operatorname{Aut}^{\operatorname{br}}_{\otimes}(\mathcal{B})$, $\mathcal{A}_i \in \mathcal{B}$ a gapped boundary. Then $\mathcal{A}_{j_g} := \rho_g(\mathcal{A}_i) \in \mathcal{B}$ is a gapped boundary. Recall:

Definition

Let \mathcal{B} be a MTC, $\mathcal{A}_i \in \text{Obj } \mathcal{B}$ a Lagrangian algebra. The *quotient* category $\mathcal{B}/\mathcal{A}_i$ is the category s.t.

- $② \operatorname{\mathsf{Hom}}_{\mathcal{B}/\mathcal{A}_i}(X,Y) = \operatorname{\mathsf{Hom}}_{\mathcal{B}}(X,\mathcal{A}_i \otimes Y).$

Replace the MTC \mathcal{B} with the G-graded category \mathcal{B}_G . Result:

$$F: \mathcal{B}_G \to \mathcal{Q}(G, \mathcal{A}_i) = \bigoplus_{g \in G} \mathcal{C}_{ij_g} = \bigoplus_{g \in G} \operatorname{Fun}_{\mathcal{C}}(\mathcal{M}_i, \mathcal{M}_{j_g}) \tag{4}$$

(C, Cheng, Wang)

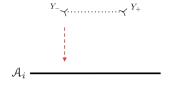
Crossed condensation functor:

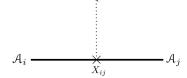
$$F:\mathcal{B}_G\to\mathcal{Q}(G,\mathcal{A}_i)=\oplus_{g\in G}\mathcal{C}_{ij_g}=\oplus_{g\in G}\operatorname{Fun}_\mathcal{C}(\mathcal{M}_i,\mathcal{M}_{j_g})$$

Crossed condensation functor:

$$F:\mathcal{B}_G\to\mathcal{Q}(G,\mathcal{A}_i)=\oplus_{g\in G}\mathcal{C}_{ij_g}=\oplus_{g\in G}\operatorname{Fun}_\mathcal{C}(\mathcal{M}_i,\mathcal{M}_{j_g})$$

Physical explanation:





Crossed condensation: Examples

•
$$\mathfrak{D}(\mathbb{Z}_p)$$
: $\mathcal{B}_1 = \{\tau_0, ... \tau_{p-1}\}, \ \mathcal{C}_{12} = \{\tau_{12}\}, \ \tau_i \mapsto \tau_{12}$

•
$$\mathfrak{D}(S_3)$$
: $\mathcal{B}_1 = \{\sqrt{3}, \sqrt{3}, \sqrt{3}, \sqrt{3}, 2\sqrt{3}, 2\sqrt{3}\} \to \mathcal{C}_{12} = \{\sqrt{3}, \sqrt{3}\}$

Braiding boundary defects

Theorem (C, Cheng, Wang)

Let \mathcal{A}_i and \mathcal{A}_j be two Lagrangian algebras (gapped boundaries) in $\mathcal{B}=\mathcal{Z}(\mathcal{C})$, and let \mathcal{M}_i and \mathcal{M}_j be the corresponding indecomposable module categories. Suppose \mathcal{A}_i and \mathcal{A}_j are related by a global G symmetry of \mathcal{B} . Then:

- **1** There is a projective G-crossed braiding of the boundary defects in C_{ij} with those in C_{ji} , and with the boundary excitations in C_{jj} .
- There is a canonical choice of this braiding and a systematic method to compute the projective representation.
- **3** If all defects in C_{ji} are fixed by the action of $g \in G$, the projective G-crossed braiding is a projective braiding of boundary defects.

Braiding done in the bulk (through correspondence):

$$X_{ij} \otimes X_{ji} \to I(X_{ij}) \otimes I(X_{ji}) \xrightarrow{G^{\times}} \rho_1(I(X_{ji})) \otimes I(X_{ij}) \to \rho_1(X_{ji}) \otimes X_{ij}.$$
 (5)

Braiding boundary defects: Examples

- $\mathfrak{D}(\mathbb{Z}_2)$: get $\pi/16$ phase gate, Majorana zero mode braid statistics
- $\mathfrak{D}(S_3)$: expect $SU(2)_4$ braiding, which would give universal TQC

Outlook

Known:

- Gapped boundaries as indecomposable modules, Lagrangian algebras
- Boundary excitations, defects in multi-fusion category
- ullet Bulk-edge correspondence for certain boundary defects, symmetry defects ullet braiding

Goal:

- Other boundary defects not covered by this correspondence?
- New symmetry in the bulk?
- Efficient encoding/gates for topological quantum computation?

Acknowledgments

- Special to Maissam Barkeshli, Shawn Cui, Cesar Galindo for answering many questions
- Many thanks to Prof. Michael Freedman and everyone at Station Q
- None of this would have been possible without the guidance and dedication of Prof. Zhenghan Wang

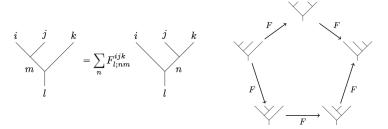
Thanks!

Backup slides

Unitary fusion categories (UFCs)

Some key properties of a UFC \mathcal{C} over \mathbb{C} :

- Monoidal structure:
 - Tensor product ⊗: fusion
 - Tensor unit 1: vacuum
 - ullet Functorial associativity and unit isomorphisms, encoded by F symbols



Unitary fusion categories (UFCs)

Key properties: [Cont'd]

- Semisimplicity: All objects are direct sums of simple objects
 - Finite number of simple objects, 1 is simple
 - Fusion rules: $x \otimes y \rightarrow \bigoplus_{C} N_{xy}^{z} z$
- \mathbb{C} -linear: $\mathsf{Hom}(x,y)$ is a \mathbb{C} -vector space for all $x,y\in\mathsf{Obj}(\mathcal{C}),\otimes\mathsf{bilinear}$ on morphisms

Examples: Vec_G , Rep(G), ...

The Levin-Wen model

 $\mathcal{Z}(\mathcal{C})$ is a modular tensor category (MTC):

- MTC is a UFC, simple objects form anyon system
- Braiding structure: σ_{ab} : $a \otimes b \rightarrow b \otimes a$ for all a, b (R symbols)
- Non-degeneracy: only transparent anyon is unit

Theorem (Fröhlich, Fuchs, Runkel, Schweigert)

 $\mathcal A$ is a commutative algebra in a MTC $\mathcal B$ if and only if the object $\mathcal A$ decomposes into simple objects as $\mathcal A=\oplus_s n_s s$, with $\theta_s=1$ (i.e. s is bosonic) for all s such that $n_s\neq 0$.

Theorem (C, Cheng, Wang)

A commutative connected algebra $\mathcal{A}=\oplus_s n_s s$ with $\mathsf{FPdim}(\mathcal{A})^2=\mathsf{FPdim}(\mathcal{B})$ is a Lagrangian algebra in the MTC \mathcal{B} if and only if the following inequality holds for all $a,b\in\mathsf{Obj}(\mathcal{B})$:

$$n_a n_b \le \sum_c N_{ab}^c n_c \tag{6}$$

where N_{ab}^c are the coefficients given by the fusion rules of \mathcal{B} .

