Universal Quantum Computation with Gapped Boundaries

Iris Cong, Meng Cheng, Zhenghan Wang

cong@g.harvard.edu

Department of Physics Harvard University, Cambridge, MA

April 23rd, 2018

Refs.: C, Cheng, Wang, *Comm. Math. Phys.* (2017) 355: 645. C, Cheng, Wang, *Phys. Rev. Lett.* **119**, 170504 (2017).

Introduction: Quantum Computation

- Quantum computing:
 - Feynman (1982): Use a quantum-mechanical computer to simulate quantum physics (classically intractable)
 - Encode information in qubits, gates = unitary operations
 - Applications: Factoring/breaking RSA (Shor, 1994), quantum machine learning, ...

Introduction: Quantum Computation

- Quantum computing:
 - Feynman (1982): Use a quantum-mechanical computer to simulate quantum physics (classically intractable)
 - Encode information in qubits, gates = unitary operations
 - Applications: Factoring/breaking RSA (Shor, 1994), quantum machine learning, ...
- Major challenge: local decoherence of qubits

Introduction: Topological Quantum Computation

- **Topological** quantum computing (TQC) (Kitaev, 1997; Freedman et al., 2003):
 - Encode information in topological degrees of freedom
 - Perform topologically protected operations

Topological Quantum Computation

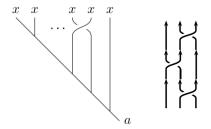
- Traditional realization of TQC: anyons in topological phases of matter (e.g. Fractional Quantum Hall - FQH)
 - ullet Elementary (quasi-)particles in 2 dimensions s.t. $|\psi_1\psi_2
 angle=e^{i\phi}|\psi_2\psi_1
 angle$

Topological Quantum Computation

- Traditional realization of TQC: anyons in topological phases of matter (e.g. Fractional Quantum Hall - FQH)
 - Elementary (quasi-)particles in 2 dimensions s.t. $|\psi_1\psi_2\rangle=e^{i\phi}|\psi_2\psi_1\rangle$
- Qubit encoding: degeneracy arising from the fusion rules
 - e.g. Toric code: $e^i m^j \otimes e^k m^l = e^{(i+k) \pmod{2}} m^{(j+l) \pmod{2}}$ (i,j=0,1)
 - e.g. Ising: $\sigma \otimes \sigma = 1 \oplus \psi$, $\psi \oplus \psi = 1$
 - ullet e.g. Fibonacci: $au\otimes au=1\oplus au$

Topological Quantum Computation

- Topologically protected operations: Braiding of anyons
 - \bullet Move one anyon around another \to pick up phase (due to Aharonov-Bohm)



Figures: (1) Z. Wang, Topological Quantum Computation.

(2) C. Nayak et al., Non-abelian anyons and topological quantum computation.

• Problem: Abelian anyons have no degeneracy, so no computation power \rightarrow need non-abelian anyons for TQC (e.g. $\nu=5/2,12/5$)

- Problem: Abelian anyons have no degeneracy, so no computation power \rightarrow need non-abelian anyons for TQC (e.g. $\nu=5/2,12/5$)
- These are difficult to realize, existence is still uncertain

- Problem: Abelian anyons have no degeneracy, so no computation power \rightarrow need non-abelian anyons for TQC (e.g. $\nu = 5/2, 12/5$)
- These are difficult to realize, existence is still uncertain
- Question: Given a top. phase that supports only abelian anyons, is it possible "engineer" other non-abelian objects?

- Problem: Abelian anyons have no degeneracy, so no computation power \rightarrow need non-abelian anyons for TQC (e.g. $\nu = 5/2, 12/5$)
- These are difficult to realize, existence is still uncertain
- Question: Given a top. phase that supports only abelian anyons, is it possible "engineer" other non-abelian objects?
 - ullet Answer: Yes! We consider boundaries of the topological phase ightarrow gapped boundaries
 - We'll even get a universal gate set from gapped boundaries of an abelian phase (specifically, bilayer $\nu=1/3$ FQH)

Overview

- Framework of TQC
- Introduce gapped boundaries and their framework
- Gapped boundaries for TQC
- ullet Universal TQC with gapped boundaries in bilayer u=1/3 FQH
- Summary and Outlook

Overview

- Framework of TQC
- Introduce gapped boundaries and their framework
- Gapped boundaries for TQC
- ullet Universal TQC with gapped boundaries in bilayer u=1/3 FQH
- Summary and Outlook

Formally, an anyon model ${\cal B}$ consists of the following data:

- Set of anyon types/labels: $\{a,b,c...\}$, one of which should represent the vacuum ${\bf 1}$
 - Each anyon type has a topological twist $\theta_i \in U(1)$:

$$\sum_{i} = \theta_{i} \mid_{i}$$

¹More general cases exist, but are not used in this talk.

Formally, an anyon model ${\cal B}$ consists of the following data:

- Set of anyon types/labels: $\{a, b, c...\}$, one of which should represent the vacuum ${\bf 1}$
 - Each anyon type has a topological twist $\theta_i \in U(1)$:

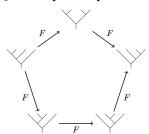
$$= \theta_i \mid i$$

- For each pair of anyon types, a set of fusion rules: $a \otimes b = \bigoplus_c N^c_{ab} c$.
 - The fusion space of $a \otimes b$ is a vector space V_{ab} with basis V_{ab}^{c} .
 - The fusion space of $a_1 \otimes a_2 \otimes ... \otimes a_n$ to b is a vector space $V^b_{a_1 a_2 ... a_n}$ with basis given by anyon labels in intermediate segments, e.g.

More general cases exist, but are not used in this talk.

Formally, an anyon model \mathcal{B} consists of the following data: [Cont'd]

• Associativity: for each (a, b, c, d), a set of (unitary) linear transformations $\{F_{d;ef}^{abc}: V_d^{abc} \rightarrow V_d^{abc}\}$ satisfying "pentagons"



Formally, an anyon model ${\cal B}$ consists of the following data: [Cont'd]

• (Non-degenerate) braiding: For each (a, b, c) s.t. $N_{a,b}^c \neq 0$, a set of phases $R_{ab}^c \in U(1)$ compatible with associativity ("hexagons"):

Figures: Z. Wang, Topological Quantum Computation (2010)

¹More general cases exist, but are not used in this talk.

Formally, an anyon model ${\cal B}$ consists of the following data: [Cont'd]

• (Non-degenerate) braiding: For each (a, b, c) s.t. $N_{a,b}^c \neq 0$, a set of phases $R_{ab}^c \in U(1)$ compatible with associativity ("hexagons"):

Mathematically, this is captured by a (unitary) modular tensor category (UMTC)

Figures: Z. Wang, Topological Quantum Computation (2010)

 $[\]begin{array}{c} F^{-1} \nearrow \\ \\ R^{-1} \nearrow \\ \\ \\ F^{-1} \end{array}$

More general cases exist, but are not used in this talk.

- In this framework, a 2D topological phase of matter is an equivalence class of gapped Hamiltonians $\mathcal{H} = \{H\}$ whose low-energy excitations form the same anyon model \mathcal{B}
- Examples (on the lattice) include Kitaev's quantum double models, Levin-Wen string-net models, ...

Framework of TQC: Example

- Physical system: Bilayer FQH system, 1/3 Laughlin state of opposite chirality in each layer
- Equivalent to \mathbb{Z}_3 toric code (Kitaev, 2003)
- Anyon types: $e^a m^b$, a, b = 0, 1, 2
- Twist: $\theta(e^a m^b) = \omega^{ab}$ where $\omega = e^{2\pi i/3}$
- Fusion rules: $e^a m^b \otimes e^c m^d \rightarrow e^{(a+c) \pmod{3}} m^{(b+d) \pmod{3}}$
- F symbols all trivial (0 or 1)
- $R_{e^a m^b, e^c m^d} = e^{2\pi i b c/3}$
- $\bullet \ \ \mathsf{UMTC} \colon \mathsf{SU}(3)_1 \times \overline{\mathsf{SU}(3)_1} \cong \mathfrak{D}(\mathbb{Z}_3) = \mathcal{Z}(\mathsf{Rep}(\mathbb{Z}_3)) = \mathcal{Z}(\mathsf{Vec}_{\mathbb{Z}_3})$

Overview

- Framework of TQC
- Introduce gapped boundaries and their framework
- Gapped boundaries for TQC
- ullet Universal gate set with gapped boundaries in bilayer u=1/3 FQH
- Summary and Outlook

• A gapped boundary is an equivalence class of gapped local (commuting) extensions of $H \in \mathcal{H}$ to the boundary

- A gapped boundary is an equivalence class of gapped local (commuting) extensions of $H \in \mathcal{H}$ to the boundary
- In the anyon model: Collection of bulk bosonic $(\theta=1)$ anyons which condense to vacuum on the boundary (think Bose condensation)
 - All other bulk anyons condense to confined "boundary excitations" $\alpha, \beta, \gamma...$
- ullet Mathematically, Lagrangian algebra $\mathcal{A} \in \mathcal{B}$

More rigorously, gapped boundaries come with M symbols (like F symbols for the bulk):

More rigorously, gapped boundaries come with M symbols (like F symbols for the bulk):

(More generally, we also define these with boundary excitations, but that is unnecessary for this talk.)

More rigorously, gapped boundaries come with M symbols (like F symbols for the bulk):

(More generally, we also define these with boundary excitations, but that is unnecessary for this talk.)

M symbols must be compatible with F symbols ("mixed pentagons"):

- Physical system: Bilayer $\nu=1/3$ FQH, equiv. to \mathbb{Z}_3 toric code
- Anyon types: $e^a m^b$, a, b = 0, 1, 2

- Physical system: Bilayer $\nu=1/3$ FQH, equiv. to \mathbb{Z}_3 toric code
- Anyon types: $e^a m^b$, a, b = 0, 1, 2
- Two gapped boundary types:
 - Electric charge condensate: $A_1 = 1 \oplus e \oplus e^2$
 - Magnetic flux condensate: $A_2 = 1 \oplus m \oplus m^2$

- Physical system: Bilayer $\nu=1/3$ FQH, equiv. \mathbb{Z}_3 toric code
- We will work mainly with $A_1 = 1 \oplus e \oplus e^2$:
 - ullet Algebraically, \mathcal{A}_1 , \mathcal{A}_2 are equivalent by electric-magnetic duality
 - Easier to work with charge condensate read-out can be done by measuring electric charge (Barkeshli, 2016)
 - It is interesting to consider both A_1 and A_2 at the same time we do this in a separate paper³, will briefly mention in our Outlook

- Physical system: Bilayer $\nu=1/3$ FQH, equiv. \mathbb{Z}_3 toric code
- We will work mainly with $A_1 = 1 \oplus e \oplus e^2$:
 - ullet Algebraically, \mathcal{A}_1 , \mathcal{A}_2 are equivalent by electric-magnetic duality
 - Easier to work with charge condensate read-out can be done by measuring electric charge (Barkeshli, 2016)
 - It is interesting to consider both A_1 and A_2 at the same time we do this in a separate paper³, will briefly mention in our Outlook
- M symbols for this theory are all 0 or 1

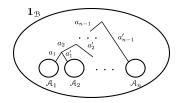
Overview

- Framework of TQC
- Introduce gapped boundaries and their framework
- Gapped boundaries for TQC
- ullet Universal gate set with gapped boundaries in bilayer u=1/3 FQH
- Summary and Outlook

Gapped Boundaries for TQC

Qudit encoding:

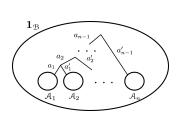
• Gapped boundaries give rise to a natural ground state degeneracy: *n* gapped boundaries on a plane, with total charge vacuum

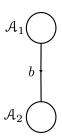


Gapped Boundaries for TQC

Qudit encoding:

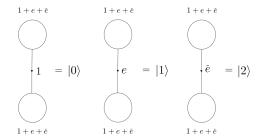
- Gapped boundaries give rise to a natural ground state degeneracy: n
 gapped boundaries on a plane, with total charge vacuum
- For qudit encoding: use n = 2





Gapped Boundaries for TQC: Example

For our bilayer $\nu = 1/3$ FQH system, we have:



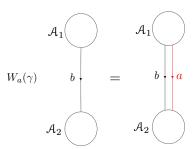
Gapped Boundaries for TQC

Topologically protected operations:

- Tunnel-a operations
- Loop-a operations
- Braiding gapped boundaries
- Topological charge measurement*

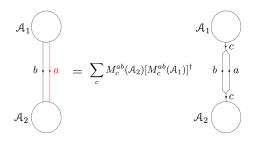
Tunnel-a Operations

Starting from state $|b\rangle$, tunnel an a anyon from A_1 to A_2 :



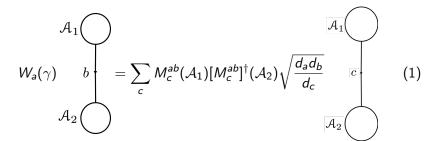
Tunnel-a Operations

Compute using *M*-symbols:



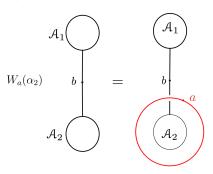
Tunnel-a Operations

Result:



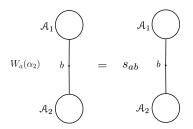
Loop-a Operations

Starting from state $|b\rangle$, loop an a anyon around one of the boundaries:



Loop-a Operations

Similar computation methods lead to the formula:



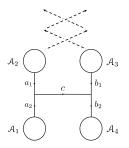
where $s_{ab} = \tilde{s}_{ab}/d_b$ is given by the modular S matrix of the theory:

$$\tilde{s}_{ij} = \bigcirc$$

$$i \quad j$$

Braiding Gapped Boundaries

Braid gapped boundaries around each other:



(Mathematically, this gives a representation of the (spherical) 2n-strand pure braid group.)

Braiding Gapped Boundaries

Simplify with (bulk) R and F moves to get:

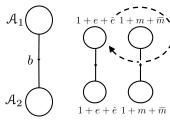
$$\sigma_{2}^{2} \xrightarrow[A_{1}]{c} \xrightarrow[b_{1}]{c} = \sum_{c,c'} F_{b_{2};c'c}^{a_{2}a_{1}b_{1}} R_{c}^{b_{1}a_{1}} R_{c}^{a_{1}b_{1}} (F_{b_{2}}^{a_{2}a_{1}b_{1}})_{c''c'}^{-1} \xrightarrow[a_{2}]{c''} \xrightarrow[b_{2}]{c''}} \xrightarrow[b_{2}]{A_{3}}$$

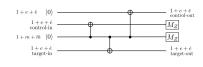
$$(2)$$

Gapped Boundaries for TQC: Example

For our bilayer $\nu=1/3$ FQH case: $(\mathcal{A}_1=\mathcal{A}_2=1\oplus e\oplus e^2)$

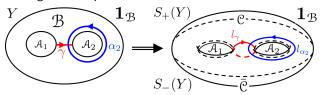
- Tunnel an e anyon from A_1 to A_2 : $W_a(\gamma)|b\rangle = |a\otimes b\rangle$ $\to W_e(\gamma) = \sigma_3^x$, where $\sigma_3^x|i\rangle = |(i+1) \pmod 3\rangle$
- Loop an m anyon around \mathcal{A}_2 : $W_m(\alpha_2)|e^j\rangle = \omega^j|e^j\rangle$ $\rightarrow W_m(\alpha_2) = \sigma_3^z$
- Braid gapped boundaries: get $\wedge \sigma_3^z$





- Motivation:
 - Property F conjecture (Naidu and Rowell, 2011): Braidings alone cannot be universal for TQC for most physically plausible systems

- Motivation:
 - Property F conjecture (Naidu and Rowell, 2011): Braidings alone cannot be universal for TQC for most physically plausible systems
- Topological charge projection (TCP) (Barkeshli and Freedman, 2016):
 - ullet Doubled theories: Wilson line lifts to a loop o measure topological charge through the loop



• Resulting projection operator: $(\mathcal{O}_x(\beta) = W_{x\bar{x}}(\gamma_i) \text{ or } W_x(\alpha_i))$

$$P_{\beta}^{(a)} = \sum_{\mathbf{x} \in \mathcal{C}} S_{0a} S_{\mathbf{x}a}^* \mathcal{O}_{\mathbf{x}}(\beta). \tag{3}$$

- Topological charge projection (TCP): [Cont'd]
 - \bullet Given an anyon theory $\mathcal{C},$ its \mathcal{S},\mathcal{T} matrices

$$\mathcal{S} = \left\{egin{array}{l} ilde{s}_{ij} = igcolum{0}{j} \ i = j \end{array}
ight\}, \qquad \mathcal{T} = \mathsf{diag}(heta_i)$$

give mapping class group representations $V_{\mathcal{C}}(Y)$ for surfaces Y.

• Barkeshli and Freedman showed that topological charge projections generate all matrices in $V_{\mathcal{C}}(Y)$

More general cases exist, but are not used in this talk.

- Topological charge projection (TCP): [Cont'd]
 - \bullet Given an anyon theory $\mathcal{C},$ its \mathcal{S},\mathcal{T} matrices

$$\mathcal{S} = \left\{egin{array}{l} ilde{s}_{ij} = igcolum{0}{j} \ i = j \end{array}
ight\}, \qquad \mathcal{T} = \mathsf{diag}(heta_i)$$

give mapping class group representations $V_{\mathcal{C}}(Y)$ for surfaces Y.

- Barkeshli and Freedman showed that topological charge projections generate all matrices in $V_{\mathcal{C}}(Y)$
- General topological charge measurements (TCMs):
 - Projection operators $P_{\beta}^{(a)} = \sum_{x \in \mathcal{C}} S_{0a} S_{xa}^* \mathcal{O}_x(\beta) \to \text{topological charge}$ measurements perform the *complement* of $P_{\beta}^{(a)}$
 - Not always physical, but special cases are symmetry protected we examine this

¹More general cases exist, but are not used in this talk.

Overview

- Framework of TQC
- Introduce gapped boundaries and their framework
- Gapped boundaries for TQC
- \bullet Universal gate set with gapped boundaries in bilayer $\nu=1/3$ FQH
- Summary and Outlook

Universal Gate Set

- The single-qutrit Hadamard gate H_3 , defined as $H_3|j\rangle = \frac{1}{\sqrt{3}} \sum_{i=0}^2 \omega^{ij}|i\rangle$, $j=0,1,2,\ \omega=e^{2\pi i/3}$
- ② The two-qutrit entangling gate SUM₃, defined as $SUM_3|i\rangle|j\rangle = |i\rangle|(i+j) \mod 3\rangle$, i,j=0,1,2.
- **3** The single-qutrit generalized phase gate $Q_3 = \text{diag}(1, 1, \omega)$.
- Any nontrivial single-qutrit classical (i.e. Clifford) gate not equal to H_3^2 .
- **o** A projection M of a state in the qutrit space \mathbb{C}^3 to $\mathrm{Span}\{|0\rangle\}$ and its orthogonal complement $\mathrm{Span}\{|1\rangle,|2\rangle\}$, so that the resulting state is coherent if projected into $\mathrm{Span}\{|1\rangle,|2\rangle\}$.

Universal Gate Set - Bilayer $\nu=1/3$ FQH

Universal (*metaplectic*) gate set for the qutrit model (Cui and Wang, 2015):

• $H_3 = S$ for $C = SU(3)_1$ (single layer $\nu = 1/3$ FQH), so it can be implemented by TCP.

Universal Gate Set - Bilayer $\nu=1/3$ FQH

- $H_3 = S$ for $C = SU(3)_1$ (single layer $\nu = 1/3$ FQH), so it can be implemented by TCP.
- ② $\wedge \sigma_3^z$ can be implemented by gapped boundary braiding. Conjugate second qutrit by H_3 to get SUM₃.

Universal Gate Set - Bilayer $\nu = 1/3$ FQH

- $H_3 = S$ for $C = SU(3)_1$ (single layer $\nu = 1/3$ FQH), so it can be implemented by TCP.
- ② $\wedge \sigma_3^z$ can be implemented by gapped boundary braiding. Conjugate second qutrit by H_3 to get SUM₃.
- **3** TCP can implement diag $(1, \omega, \omega)$ (Dehn twist of SU(3)₁). Follow by σ_3^x for Q_3 .

Universal Gate Set - Bilayer $\nu = 1/3$ FQH

- $H_3 = S$ for $C = SU(3)_1$ (single layer $\nu = 1/3$ FQH), so it can be implemented by TCP.
- ② $\wedge \sigma_3^z$ can be implemented by gapped boundary braiding. Conjugate second qutrit by H_3 to get SUM₃.
- **3** TCP can implement diag $(1, \omega, \omega)$ (Dehn twist of SU $(3)_1$). Follow by σ_3^x for Q_3 .
- **4** Any nontrivial single-qutrit classical (i.e. Clifford) gate not equal to H_3^2 we have a Pauli-X from tunneling e.

Universal Gate Set - Bilayer $\nu=1/3$ FQH

Universal (*metaplectic*) gate set for the qutrit model (Cui and Wang, 2015):

- $H_3 = S$ for $C = SU(3)_1$ (single layer $\nu = 1/3$ FQH), so it can be implemented by TCP.
- ② $\wedge \sigma_3^z$ can be implemented by gapped boundary braiding. Conjugate second qutrit by H_3 to get SUM₃.
- **3** TCP can implement diag $(1, \omega, \omega)$ (Dehn twist of SU(3)₁). Follow by σ_3^x for Q_3 .
- Any nontrivial single-qutrit classical (i.e. Clifford) gate not equal to H_3^2 we have a Pauli-X from tunneling e.
- Of Projective measurement we use the TCM which is the complement of

$$P_{\gamma}^{(1)} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} . \tag{4}$$

Conjugating $1 - P_{\gamma}^{(1)}$ with the Hadamard gives the result.

Universal Gate Set - Bilayer $\nu=1/3$ FQH

To get the projective measurement, we introduce a *symmetry-protected* topological charge measurement:

- Want to tune system s.t. quasiparticle tunneling along γ is enhanced \rightarrow implement $H' = -tW_{\gamma}(e) + \text{h.c.}$
 - t = (complex) tunneling amplitude, $W_{\gamma}(e) = \text{tunnel-}e$ operator

Universal Gate Set - Bilayer $\nu = 1/3$ FQH

To get the projective measurement, we introduce a *symmetry-protected* topological charge measurement:

- Want to tune system s.t. quasiparticle tunneling along γ is enhanced \rightarrow implement $H' = -tW_{\gamma}(e) + \text{h.c.}$
 - ullet t= (complex) tunneling amplitude, $W_{\gamma}(e)=$ tunnel-e operator
- Implementing $M \leftrightarrow$ ground state of H' is doubly degenerate for $|e\rangle, |e^2\rangle \leftrightarrow t$ is real (beyond topological protection)

Universal Gate Set - Bilayer $\nu = 1/3$ FQH

To get the projective measurement, we introduce a *symmetry-protected* topological charge measurement:

- Want to tune system s.t. quasiparticle tunneling along γ is enhanced \rightarrow implement $H' = -tW_{\gamma}(e) + \text{h.c.}$
 - ullet t= (complex) tunneling amplitude, $W_{\gamma}(e)=$ tunnel-e operator
- Implementing $M \leftrightarrow$ ground state of H' is doubly degenerate for $|e\rangle, |e^2\rangle \leftrightarrow t$ is real (beyond topological protection)
- Physically, could realize in fractional quantum spin Hall state quantum spin Hall + time-reversal symmetry (exchange two layers)
 - Topologically equiv. to $\nu=1/3$ Laughlin, e= bound state of spin up/down quasiholes
 - e is time-reversal invariant \rightarrow tunneling amplitude of e must be real \rightarrow symmetry-protected TCM

Overview

- Framework of TQC
- Introduce gapped boundaries and their framework
- Gapped boundaries for TQC
- ullet Universal gate set with gapped boundaries in bilayer u=1/3 FQH
- Summary and Outlook

Summary

- Decoherence is a major challenge to quantum computing → topological quantum computing (TQC)
- TQC with anyons requires non-abelian topological phases (difficult to implement) → engineer non-abelian objects (e.g. gapped boundaries) from abelian phases
- We can get a **universal quantum computing gate set** from a purely abelian theory (bilayer $\nu=1/3$ FQH), which is trivial for anyonic TQC
 - Topologically protected qudit encoding and Clifford gates
 - Symmetry-protected implementation for non-Clifford projection

Outlook

- Practical implementation of the symmetry-protected TCM
- More thorough study of symmetry-protected quantum computation
 - Amount of protection offered and computation power
- Other routes to engineer non-abelian objects
 - Boundary defects/parafermion zero modes from gapped boundaries of $\nu=1/3$ FQH (Lindner et al., 2014)
 - Genons and symmetry defects (Barkeshli et al., 2014; C, Cheng, Wang, 2017)
 - How would these look when combined with gapped boundaries?

Acknowledgments

- Special thanks to Cesar Galindo, Shawn Cui, Maissam Barkeshli for answering many questions
- Many thanks to Prof. Freedman and everyone at Station Q for a great summer
- None of this would have been possible without the guidance and dedication of Prof. Zhenghan Wang

Thanks!